Jump to content
View in the app

A better way to browse. Learn more.

கருத்துக்களம்

A full-screen app on your home screen with push notifications, badges and more.

To install this app on iOS and iPadOS
  1. Tap the Share icon in Safari
  2. Scroll the menu and tap Add to Home Screen.
  3. Tap Add in the top-right corner.
To install this app on Android
  1. Tap the 3-dot menu (⋮) in the top-right corner of the browser.
  2. Tap Add to Home screen or Install app.
  3. Confirm by tapping Install.

DNA is directly photographed for the first time

Featured Replies

121130_DNAPhoto-1240p.files.grid-6x2.jpg

DNA's double-helix structure is on display for the first time in this electron microscope photograph of a small bundle of DNA strands.

By Eli MacKinnon

lifeLittleMysteries-bylineIMG.standard.gif

Fifty-nine years after James Watson and Francis Crick deduced the double-helix structure of DNA, a scientist has captured the first direct photograph of the twisted ladder that props up life.

Enzo Di Fabrizio, a physics professor at Magna Graecia University in Catanzaro, Italy, snapped the [size=2]picture[/size]icon1.png using an electron microscope.

Previously, scientists had only seen DNA's structure indirectly. The double-corkscrew form was first discovered using a technique called X-ray crystallography, in which a material's shape is reconstructed based on how X-rays bounce after they collide with it.

121130_DNA1Photo-1240p.files.grid-6x2.jpgEnzo Di Fabrizio

A bundle of DNA is supported by two silicon pillars.

But Di Fabrizio and his colleagues developed a plan to bring DNA out of hiding. They built a nanoscopic landscape of extremely water-repellant silicon pillars. When they added a solution that contained strands of DNA into this scene, the water [size=2]quickly[/size]icon1.png evaporated and left behind cords of bare DNA that stretched like tightropes between the tiny mesas.

They then shone beams of electrons through holes in the silicon bed, and captured high-resolution images of the illuminated molecules.

Di Fabrizio's images actually show a thread of several interwoven DNA molecules, as opposed to just two coupled strands. This is because the energy of the electrons used would be enough to destroy an isolated double helix, or a single strand from a double helix.

But with the use of more sensitive equipment and lower energy electrons, Di Fabrizio thinks that snapshots of individual double helices will soon be [size=2]possible[/size]icon1.png

Molecules of DNA, or deoxyribonucleic acid, store the genetic instructions that govern all living organisms' growth and function.

Di Fabrizio's [size=2]innovation[/size]icon1.png will allow scientists to vividly observe interactions between DNA and some of life's other essential ingredients, such as RNA (r ibonucleic acid ). The results of Di Fabrizio's work were published in the journal NanoLetters.

http://www.msnbc.msn.com/id/50029929/ns/technology_and_science-science/

Archived

This topic is now archived and is closed to further replies.

Important Information

By using this site, you agree to our Terms of Use.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.